

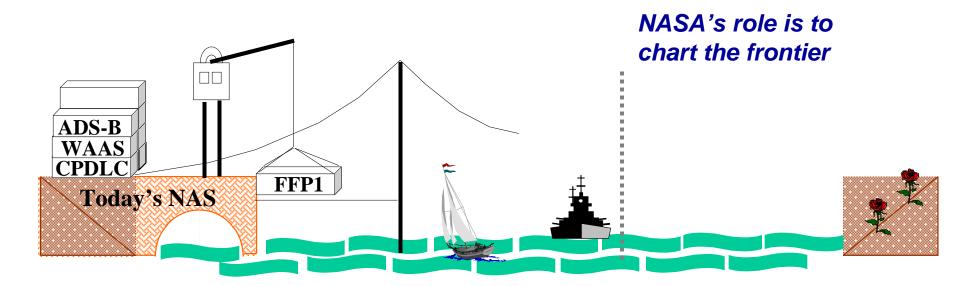
Distributed Air-Ground Traffic Management (DAG-TM)

Steve Green
Mark Ballin
David Wing

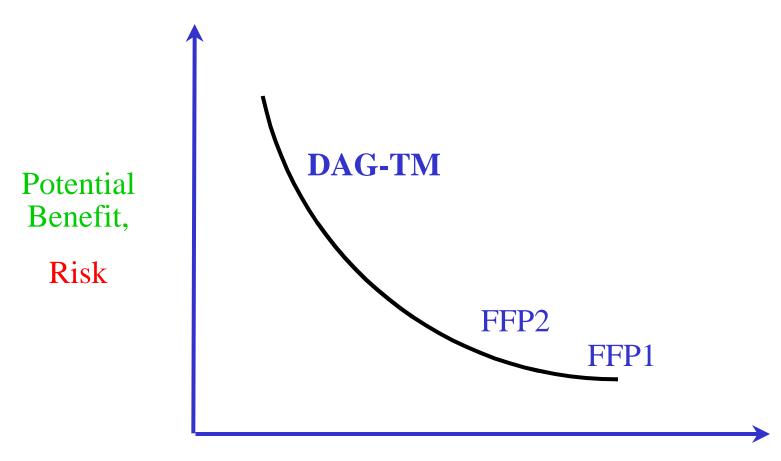
Distributed Air Ground Traffic Management (DAG-TM)
Industry Workshop
May 22, 2000

Outline

- Introduction
- DAG-TM Overview
- Airspace-Problem Approach
- DAG-TM "Concept Elements"
- DAG-TM Project Status

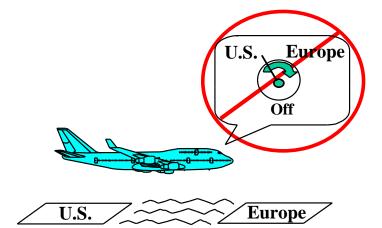


What is the Future of ATM? and what is NASA's role?


In building a bridge to Free Flight,
we can't just evolve from today's NAS,
we need to choose where to evolve to.

DAG-TM R&D

System Readiness

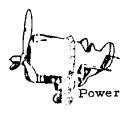


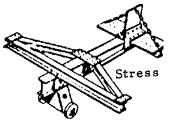
Integration, Integration, Integration!

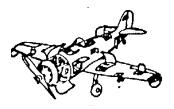
- Future ATM improvements require more than just new technologies, they require integrated solutions
- CNS-ATM integration is more than the sum of the parts...
 its the future of global interoperability
- The economics of flight operations are driven by ATM constraints.
- User goal:
 - Maximum return on investment
 - Maximum value for modernization.

Global Interoperability
We must define inter-operability today
to effectively design avionics of tomorrow.

CNS-ATM is Multi-Disciplinary



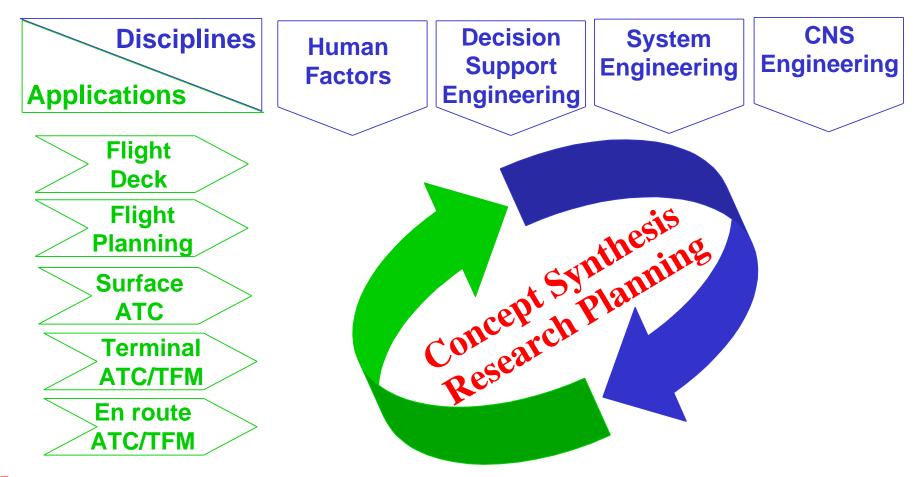

Example: Aircraft Design


Aerodynamics

Propulsion

Structures

Serviceability



Armament (Air-to-air Separation)

Distributed Air Ground (DAG) Core Team (Cross-cutting attack on DAG)

Distributed Air Ground (DAG) Core Team

- Mark Ballin
 - Flight deck engineering
- Karl Bilimoria
 - CD&R engineering
- Greg Carr
 - Terminal engineering
- Dave Foyle
 - Human factors
- Steve Green
 - En route TFM / ATC operations
- Irene Laudeman
 - System engineering
- Gus Martzaklis
 - CNS engineering
- Ev Palmer
 - Human factors

- Sandy Lozito
 - Flight deck human factors
- Walter Johnson
 - Flight deck human factors
- John Robinson
 - Terminal engineering
- Phil Snyder
 - System engineering & benefits
- Del Weathers
 - Operational concepts
- David Wing
 - Flight deck engineering
- Rick Zelenka
 - Terminal engineering

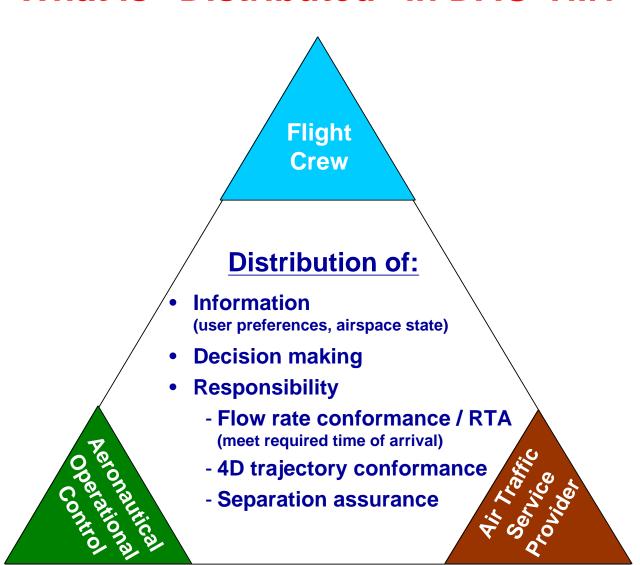
DAG-TM Overview

- DAG-TM Definition
- Scope and Assumptions
- Approach
- Targeted Benefits

DAG-TM Definition

Distributed Air-Ground Traffic Management (DAG-TM) is a National Airspace System concept in which Flight Crews, Air Traffic Service Providers, and Aeronautical Operational Control personnel use distributed decision making to:

- Enable user preferences/flexibility, and
- Increase system capacity, and
- Meet air traffic management requirements


The DAG-TM concept is a <u>detailed instantiation</u> of mature-state Free Flight providing the direction for supporting research and development activities.

Whereas NAS 4.0 defines the WHAT?, DAG-TM determines the WHY?

What is "Distributed" in DAG-TM?

DAG-TM Scope and Assumptions

Scope:

- All flight phases within the continental US
- Mature Free Flight target
 - 2015 Initial Operating Capability
 - Transition path (2005-2015)

Assumptions:

- Human-centered concept
 - Evolution from today's controller / pilot / dispatcher roles
- Mixed-equipage:
 - No user classes excluded
 - Minimize mandated upgrades
 - Benefit / reward capabilities that enhance ATM performance

Page Door

DAG-TM Approach

- Concept development... develop a "gate-to-gate" concept by:
 - Spanning a matrix (space) of gate-to-gate "problems"
 - Formulating DAG-TM-based concept "solutions" for each problem

Concept elements are possible modes of operation within the scope of the RTCA Task Force 3 concept

- Concept exploration and assessment to refine concept elements and prototype systems into feasible & cost/beneficial solutions.
- AATT products resulting from DAG-TM activities:
 - Concept definition and assessment
 - Concept prototype systems/procedures (air, ground, info., comm.)
 - System description/spec's (function/algorithms, info flow, interfaces)
 - Validation results
 - Requirements for supporting technologies (e.g., weather, data link...)
 - Safety and cost/benefit assessment

Targeted Benefits

- Reduced user direct operating costs (time and fuel)
 - Flexibility to optimize
 - » Trajectories
 - » Fleet operations
- Increased availability/utilization of user resources
 - Increased predictability
 - » Greater resource connectivity (crews and equipment)
 - » Reduced schedule "buffers"
- Increased airspace / airport capacity and throughput
 - Reduced constraints due to ATSP (controller) workload
 - User-ATM collaboration to reduce/mitigate dynamic problems
- Increased ATSP productivity
- Distribution of costs for modernization
- Fewer impediments to global interoperability

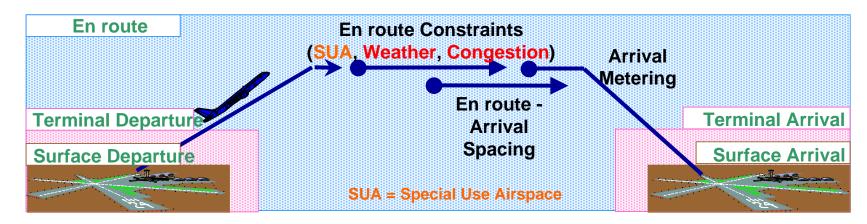
ATM = Air Traffic Management
ATSP = Air Traffic Service Provider

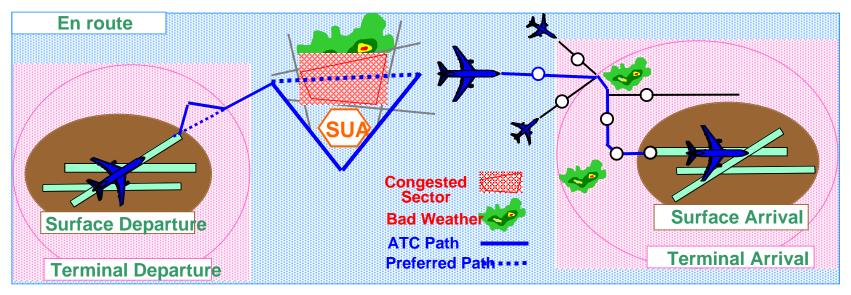
Matrix (Space) of Operational "Problems"

Matrix dimensions:

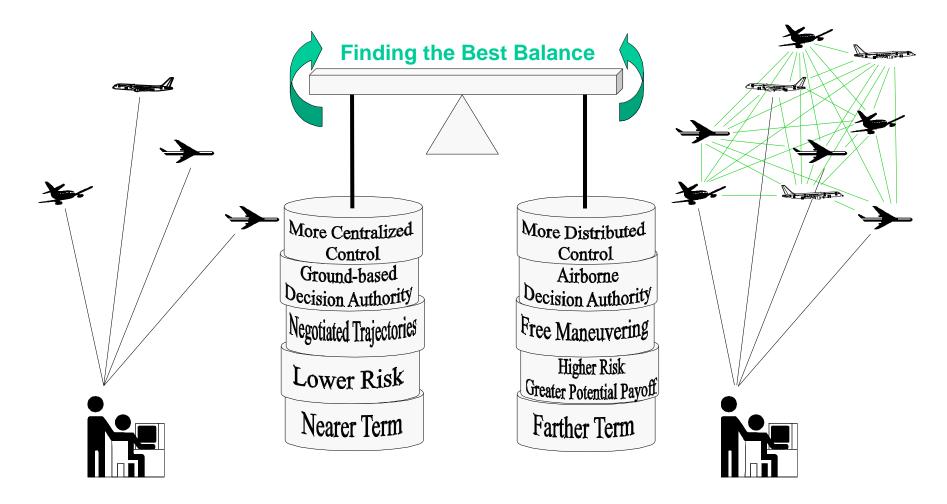
- Operational Phases:
 - Pre-flight
 - Departure
 - Cruise
 - Arrival
- US Domestic Airspace Domain:
 - Surface
 - Terminal
 - En route
- Dynamic Problems:
 - Separation assurance
 - Flow constraints
 - » Airspace constraints (SUA, weather, complexity/congestion)
 - » Transition constraints (arrival metering for airport congestion)

SUA = Special Use Airspace


DAG-TM will focus on solving domestic US airspace problems with consideration for the flight deck requirements to facilitate global interoperability.


- Oceanic
- European
- Under-developed

Set of Airspace Problems



"Complementary" Concept Elements

Pursuit of complimentary concept elements will lead to the best solutions in terms of feasibility, cost/benefit, and transition.

Concept Elements

Over-arching

Gate-to-Gate:

CE-0 Data Exchange

Pre-flight

Pre-flight Planning:

CE-1 User optimization for Constraints

En route / Terminal: (local-TFM)

Flight Operations

Surface Departure:

CE-2 Intelligent [Taxi] routing

Terminal Arrival:

• CE-9 Free Maneuvering Around Weather

CE-8 Collaboration for Arrival Metering

• CE-10 Trajectory Up link [to avoid] Weather

Terminal Departure:

- CE-3 Free Maneuvering for Separation
- CE-4 Trajectory Negotiation for Separation

En route: (Separation and local-TFM Conformance)

- CE-5 (a/b) Free Maneuvering
- CE-6 (a/b) Trajectory Negotiation

En route: (local-TFM)

CE-7 Collaboration for SUA/Wx/Complexity

Terminal Arrival:

- CE-11 Self Spacing for Accurate Merge
- CE-12 Trajectory Exchange for Accurate Merge

Terminal Approach:

CE-13 Closely Spaced Approaches

Surface Arrival:

• CE-14 Intelligent [Taxi] Routing

Data Exchange (CE-0)

(over-arching)

Problem:

Inefficiencies in NAS operations due to the lack of timely and accurate NAS information to stakeholders

Solution:

Provide timely and accurate data to stakeholders including:

- » Weather and 4D winds/temperatures
- » Airspace status (SUA, delays, flow initiatives)
- » User intent (flight deck and AOC)

Benefits:

Increased efficiency and productivity for stakeholders

User-optimization for NAS Constraints (CE-1)

(pre-flight planning)

Problem:

Inadequate accommodation of user preferences (route, altitude, time) due to static and dynamic constraints in the NAS

Solution:

- ATSP provides Users (AOC) with current/predicted state of the NAS
 - » Airspace/airport delays and flow initiatives
 - » SUA status
- Users plan flights with consideration for NAS constraints
- ATSP-User collaborate to enable user preferences while safely addressing dynamic constraints within the NAS

Benefits:

Increased flexibility and user efficiency (fuel, time, schedule)

Data link & Intelligent Routing Algorithms (CE-2)

(surface - departure)

Problem:

Excess taxi-out time due to queuing for runway and ground traffic

Solution:

- User/ramp data links estimated departure time to ATSP Intelligent Ground System (IGS)
- IGS determines pushback time to:
 - » Minimize departure queue at runway
 - » Optimize/balance runway assignment & intersection/runway crossings
- Pushback/departure times data linked to appropriate user (flight deck), ramp, tower, and TRACON DST and supporting positions.

Benefits:

Decreased taxi time, departure delays, and emissions

Free Maneuvering for Separation (CE-3)

(terminal - departure)

Problem:

Inefficient departure routing due to static restrictions for separation

Solution:

- Flight deck ensures separation via supporting avionics / procedures
- Equipped aircraft select departure path / climb profile in real time within designated terminal airspace
- ATSP monitors operations (via supporting Decision Support Tools) and supports separation for non-equipped aircraft

Benefits:

- Increased user flexibility / efficiency (preferred departure routing)
- Reduced voice communications

Trajectory Negotiation for Separation (CE-4)

(terminal - departure)

Problem:

Inefficient departure routing due to static restrictions for separation

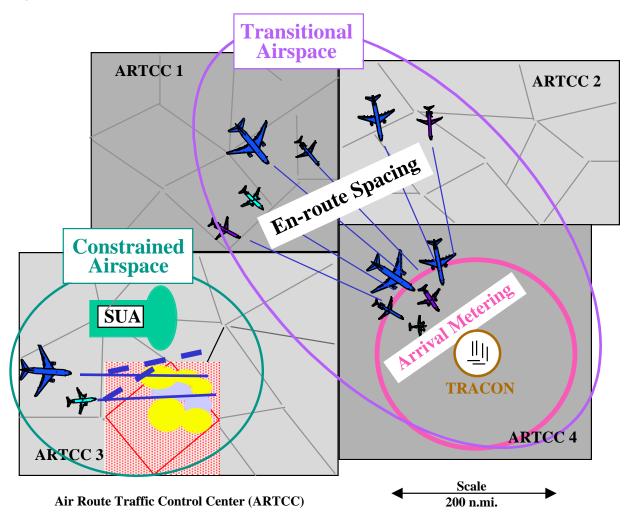
Solution:

- User and ATSP negotiate (via automation) for efficient departure paths
- User-ATSP exchange data (e.g., aircraft state) for improved predictions
- ATSP leverages enhanced DST capabilities to plan paths and accommodate user preferences

Benefits:

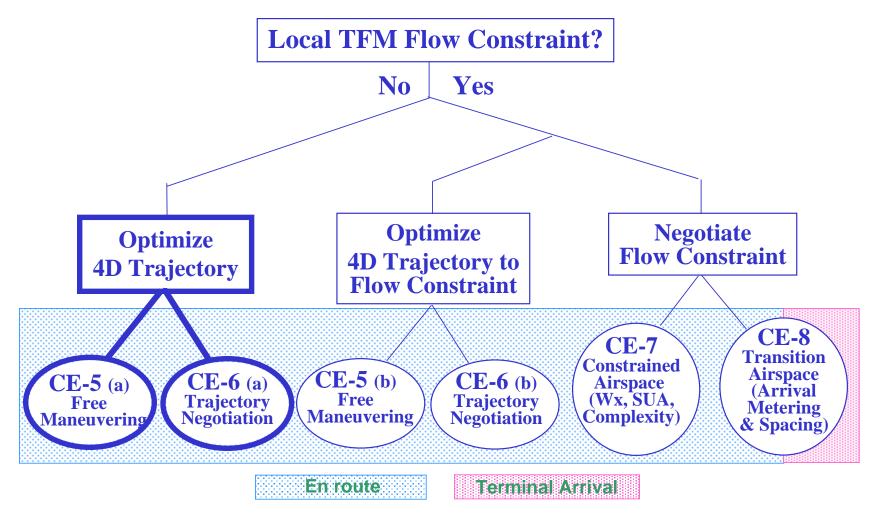
Increased user flexibility / efficiency (preferred departure routing)

En route Concept Elements


- Four Concept Elements (5, 6, 7, 8) related to en route operations
- Introduction
 - Constrained and Transition Airspace Problems
 - Mapping of Concept Elements
 - » Air Traffic Control (conformance with separation and TFM)
 - » Traffic Flow Management (TFM)

Transitional and Constrained En route Airspace

Integration of Flow-rate Conformance and Separation Assurance



Mapping of En route Concept Elements 5-8

TFM = Traffic Flow Management

Free Maneuvering for User-preferred Separation Conformance (CE-5a)

(en route)

Problem (concept elements 5a & 6a):

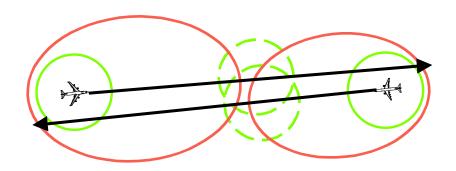
Potential traffic separation conflicts often cause ATSP-issued deviations that are excessive or not preferred by users

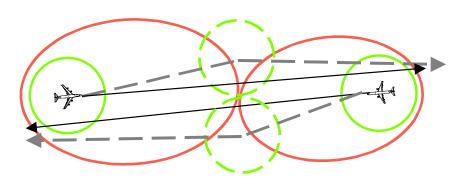
Solution:

- <u>Air</u>: Equipped aircraft maneuver freely for separation assurance
- Ground: ATSP monitors separation (with complementary groundbased tools) and provides separation assurance for non-equipped aircraft

Benefits:

- Increased safety in separation assurance
- Increased user flexibility / efficiency (preferred trajectory)
- Reduction in excess separation buffers
- Reduced voice communications




Free Maneuvering for User-preferred Separation Conformance (CE-5a)

(en route)

Conflict Prediction: Protected Zones Predicted to Merge

Conflict Resolution: Cooperative Solution

Nominal Trajectory

Proposed Resolution

Trajectory Negotiation for User-preferred Separation Conformance (CE-6a) (en route)

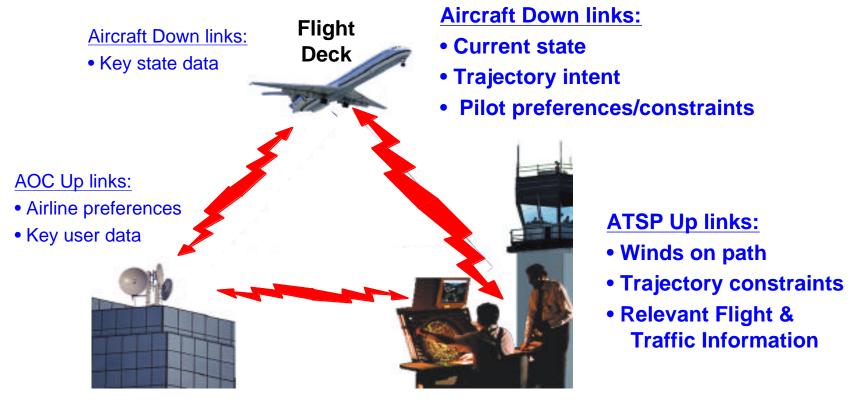
Problem (concept elements 5a & 6a):

Potential traffic separation conflicts often cause ATSP-issued deviations that are excessive or not preferred by users

Solution:

- User and ATSP negotiate for efficient resolution of conflicts
- User-ATSP data exchange (intent, winds) for improved trajectory prediction
- ATSP uses enhanced DSTs with Conflict Detection & Resolution (CD&R) capabilities

Benefits:


- Increased user efficiency via improved conflict detection & resolution
 - » Reduction in unnecessary deviations due to false-alarm conflicts
 - » More time for conflict resolution due to earlier conflict detection
- Reduction in ATSP workload for maintaining traffic separation

Frajectory Negotiation for User-preferred Separation Conformance (CE-6a)

(en route)

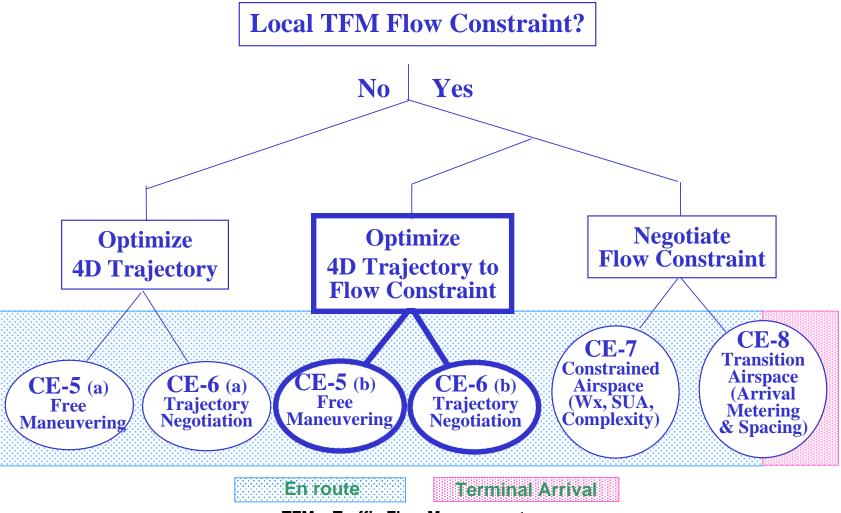
Airline Operational Control

AOC Ground links:

- Airline preferences
- Key flight data

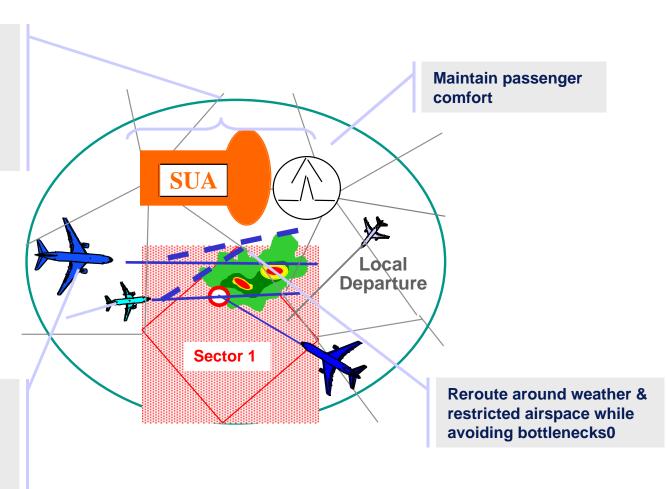
Air Traffic Control

ATSP Ground links:


Relevant NAS state information

Mapping of En route Concept Elements 5-8

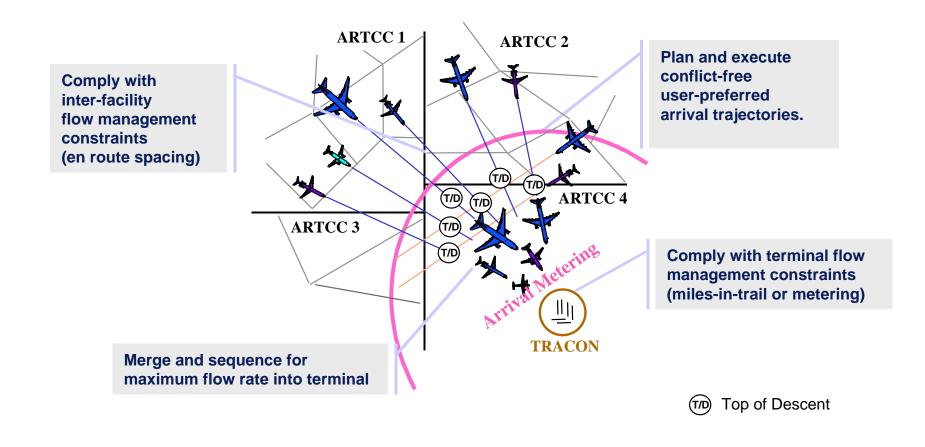
TFM = Traffic Flow Management



Constrained Airspace Challenges

Plan across multiple sectors and multiple facilities,

- involving several human planners
- using best available information


Maintain separation with other aircraft, which may have significantly different performance and navigation capability

Transitional Airspace Challenges

Free Maneuvering for User-preferred Local-TFM Conformance (CE-5b) (en route)

Problem (concept elements 5b & 6b):

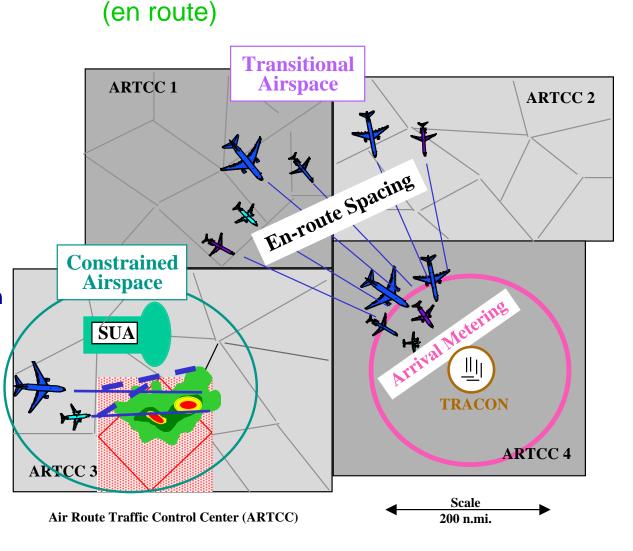
ATSP cannot accommodate trajectory change requests due to workload; and ATSP-issued clearances are often not preferred by users

Solution:

- <u>Air</u>: Equipped aircraft maneuver freely for separation & local-TFM conformance
 - » Trajectories account for the latest weather, SUA, and local TFM constraints for airport/airspace capacity (e.g., scheduled time-of-arrival (STA))
- Ground: ATSP establishes any necessary flow constraints (e.g., STA), and:
 - » Monitors the traffic situation and intervenes as necessary
 - » Assures separation and local-TFM conformance for unequipped aircraft

Benefits:

- Same as concept element 5a, plus
- Increased user flexibility/efficiency in the presence of dynamic constraints



Free Maneuvering for User-preferred Local-TFM Conformance (CE-5b)

Equipped Aircraft are free to maneuver for:

- Separation Assurance
- User-preferred conformance with local TFM constraints (route / time restrictions) due to:
 - Arrival metering / spacing
 - Airspace congestion
 - Wx, SUA

Trajectory Negotiation for User-preferred Local-TFM Conformance (CE-6b) (en route)

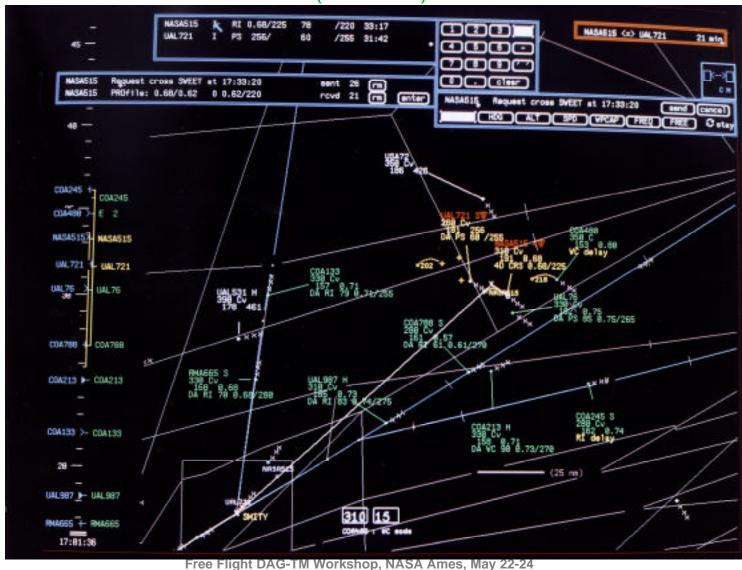
Problem (concept elements 5b & 6b):

ATSP cannot accommodate trajectory change requests due to workload; and ATSP-issued clearances are often not preferred by users

Solution:

User and ATSP negotiate for user-preferred trajectory changes:

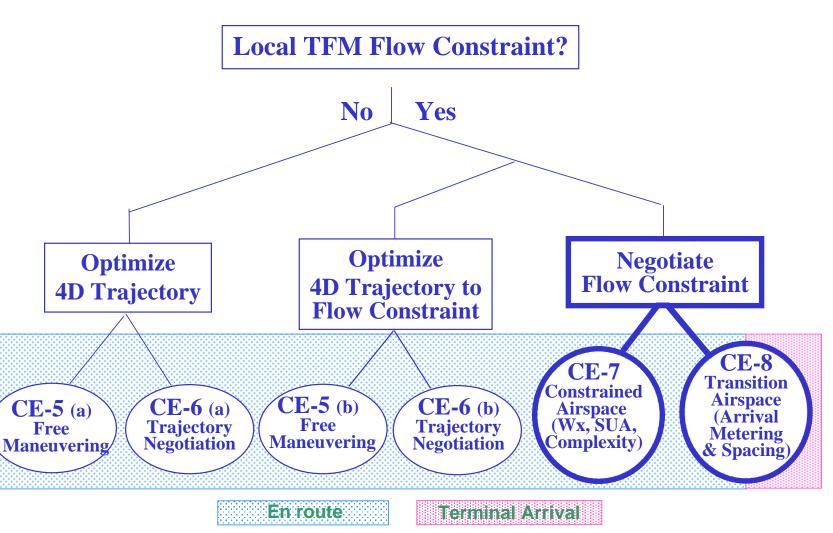
- » User formulates preferred trajectory changes, based on the latest weather, SUA, and local TFM constraints (e.g., STA), and transmits it to the ATSP.
- » ATSP evaluates trajectory change request for approval. If not approved, ATSP transmits additional constraints or issues an alternative trajectory.


Benefits:

- Same as concept element 6a, plus
- Increased user flexibility/efficiency in the presence of dynamic en route constraints

Trajectory Negotiation for User-preferred Local-TFM Conformance (CE-6b)

(en route)



Mapping of En route Concept Elements 5-8

TFM = Traffic Flow Management

Collaboration for Wx, SUA, and Complexity Constraints (CE-7)

(en route - TFM)

Problem:

Excessive and un-preferred local-TFM deviations due to inefficient use of en route airspace

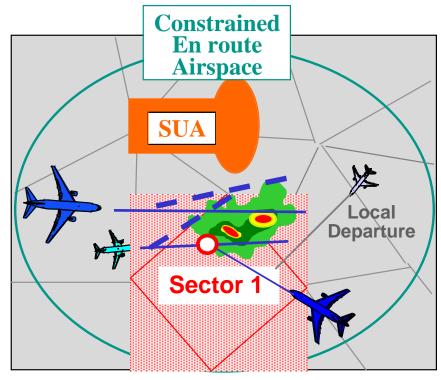
Solution:

- Provide the user with timely and accurate predictions of the state of the NAS (Weather, SUA activation, & airspace complexity constraints)
- Improve the prediction accuracy of NAS state
- Develop DSTs and procedures to:
 - » Improve local-TFM decisions and User plans/preferences (AOC & aircraft)
 - » Facilitate collaboration on the:
 - Type, extent, and implementation of local TFM initiatives (Users & ATSP)
 - Dynamic access to SUA (SUA authorities, ATSP, & Users)

- Increased user flexibility/efficiency in congested en route airspace
- Increased ATSP productivity and improved control of sector workload

Collaboration for Wx, SUA, and Complexity Constraints (CE-7)

(en route - TFM)



Airspace / sector complexity (dynamic density) is predicted to exceed acceptable levels

—— Planned Path (airborne)

——— Planned Path (pre-departure)

O Predicted Conflict

En route Air Route Traffic Control Center

Collaboration for Arrival Metering (CE-8) (en route - TFM)

Problem:

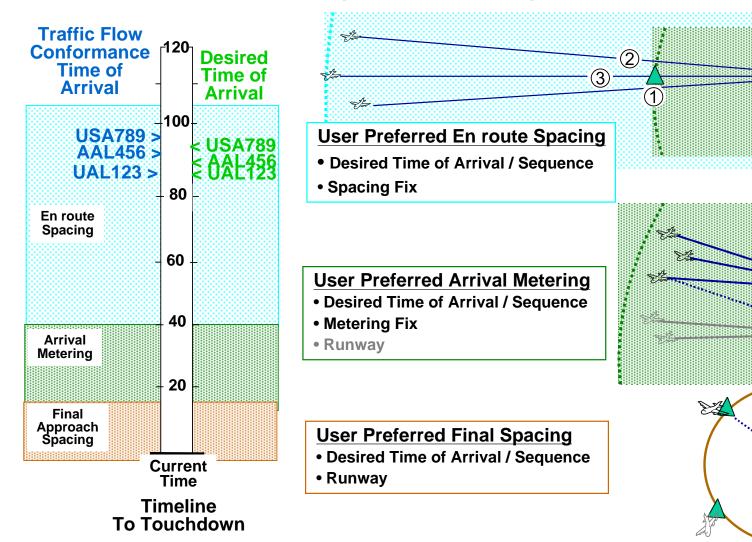
ATSP arrival metering/spacing often does not account for user preferences [3 phases: en route, extended terminal area, and terminal]

Solution:

- Users determine / data link their arrival preferences based on the predicted status of the NAS:
 - » Preferences include (depending on the arrival metering/spacing phase): Arrival Time, Arrival Routing / Metering Fix, Sequence, and Runway
- En route/Terminal ATSP(s) use DST(s) to generate metering/spacing constraints (e.g., Scheduled Times of Arrival (STA)) that accommodate user preferences considering fairness, efficiency, and sector workload

Benefits:

Increased user flexibility/efficiency/predictability at congested airports



TRACON

VIIV

Collaboration for Arrival Metering (CE-8)

(en route - TFM)

Free Maneuvering for Weather Avoidance (CE-9)

(terminal - arrival)

Problem (concept elements 9 and 10):
 Inefficient terminal re-routing to accommodate dynamic airspace constraints such as weather

Solution:

- ATSP determines sequence and scheduling constraints
- Equipped aircraft may maneuver freely, to avoid weather, within bounds determined by the ATSP
 - » Appropriately equipped aircraft may self space behind "free-maneuvering leaders"

- Increased arrival capacity/throughput in foul weather
- Increased flexibility and user efficiency
- Reduced ATSP workload

ATSP Trajectory Up link for Weather Avoidance (CE-10)

(terminal - arrival)

- Problem (concept elements 9 and 10):
 - Inefficient terminal re-routing to accommodate dynamic airspace constraints such as weather

Solution:

- ATSP leverages DSTs and ground-based weather tools to:
 - » Determine sequence and scheduling constraints
 - » Plan and up link a conflict-free trajectory to avoid weather
- Aircraft leverages avionics for trajectory planning and weather to:
 - » Analyze the the ATSP trajectory up link for safety/acceptance, and
 - » Accurately conform to the ATSP trajectory
 - » Possible collaboration with ATSP for user-preferred trajectory clearance

- Increased arrival capacity/throughput in foul weather
- Increased flexibility and user efficiency
- Reduced ATSP workload

Self Spacing for Merging and In-Trail Separation (CE-11)

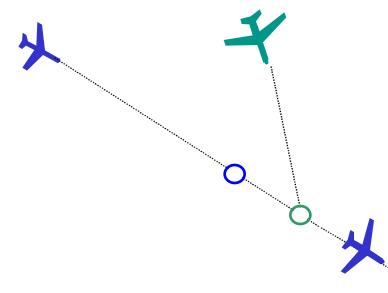
(terminal - arrival)

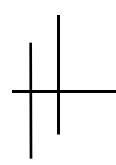
Problem (concept elements 11 and 12):

Excessive spacing buffers on final approach reduce arrival throughput and airport capacity

Solution:

- Appropriately equipped aircraft are cleared to maintain separation relative to a leading aircraft:
 - » flight deck displays and guidance for:
 - Self spacing and merging
 - Fine tuning of fixed-time spacing
- ATSP displays & procedures for shared separation responsibility


- Increased arrival throughput
- Enhanced ATSP & pilot shared understanding of traffic management plan



Self Spacing for Merging and In-Trail Separation (CE-11)

(terminal - arrival)

Enhanced CNS
New flight deck decision support tools
New ATM decision support tools
New air-ground procedures

ATSP Trajectory Exchange for Accurate Merging/Spacing (CE-12) (terminal - arrival)

Problem (concept elements 11 and 12):

Excessive spacing buffers on final approach reduce arrival throughput, especially in foul weather

Solution:

- Basic exchange of data between aircraft and ATSP to improve the accuracy of aircraft and ATSP DSTs
- ATSP uses terminal DST to plan and control conflict-free trajectories for accurate merging/spacing, and up links the trajectories to aircraft
- Aircraft precisely fly the up linked trajectories to ensure conformance

- Increased arrival capacity/throughput
- Reduced ATSP workload

Airborne CD&R for Closely-Spaced Approaches (CE-13)

(terminal - approach)

Problem:

During instrument meteorological conditions, independent approaches may not be utilized for runways less than 4300 feet apart

Solution:

- Appropriately equipped aircraft may conduct closely-spaced, independent approaches by leveraging on-board avionics, surveillance data & air-ground procedures to ensure safe separation
- ATSP DSTs assist final controllers with missed approach management in case of an abort of a closely-spaced approach

Benefits:

Increased arrival capacity/throughput

Data link & Intelligent Routing Algorithms (CE-14)

(surface - arrival)

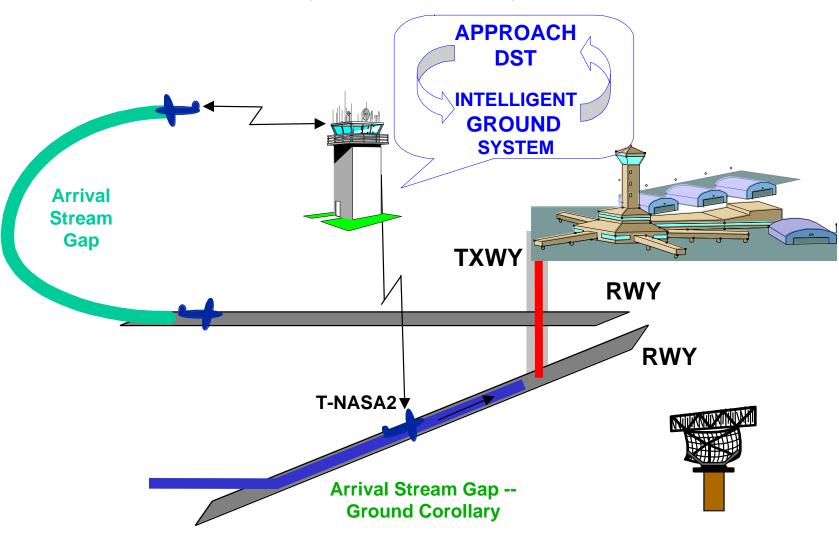
Problem:

Excess taxi-in time due to queuing for active runway crossings and ground traffic

Solution:

- Approach DST passes touchdown time to Intelligent Ground System (IGS)
 - » IGS optimizes intersection crossings and active-runway crossings
 - » IGS passes requirements for gaps in the arrival-stream to the Approach DST
- IGS data links exit and taxi clearance to flight deck on final
- Aircraft lands, exits runway, and accurately taxis on cleared route with efficient crossings of active runways

Benefits:


Decreased taxi time, arrival delays, emissions, and user/ATSP workload

Data link & Intelligent Routing Algorithms (CE-14)

(surface - arrival)

Collaborations and Partnerships

- FAA (AND, WJHTC, other?)
 - CNS-ATM, CPDLC, Air/ground integration simulations
 - Technical Transfer
- Labs
 - MITLL
 - NOAA
 - National Aerospace Laboratory of the Netherlands (NLR)
 - -Concept Development and Applied Human Factors
- RTCA
 - SC186 Work Group 2, (Conflict Detection and Resolution Subgroup)
 - SC186 Work Group 4 (Airborne architecture)
 - SC194 Work Group 2 (Flight Operations and ATM Integration)
- Cargo Airline Association
 - Safe Flight 21 Ohio Valley ADS-B Op Evaluation and future efforts
- Under Exploration:
 - MITRE/CAASD
 - Eurocontrol Experimental Centre (Bretigny)
 - Northern European ADS-B Network Update Program
 - Gulf of Mexico

DAG TM Status

- Completed DAG TM Concept Definition and High-level Research Plan documents September 30, 1999
 - Concept Definition is released for distribution (web site)
 - Research Plan in signature process for release
- Presented Concept and High-level Research Plan to NASA ATM Executive Steering Committee (ESC), October 21, 1999
 - Response favorable
 - Committee recommended priority effort
- Initial AATT project funding analysis cut CE 14 (Surface Arrival)
- Detailed CE project/resource plans developed, March 2000
- Final AATT budget/plan revision to incorporate DAG, pending.
- Industry Workshop (May 22-24) at NASA Ames... JOIN US!

DAG-TM Concept Overview Research & Development

Free Maneuvering (CE 5a & 5b)

- **Initial concepts defined**
 - Requirements-driven, integrated equipage operations (Langley contract)
 - Technology-driven, integrated equipage operations (Langley contract)
 - Unconstrained operations (NLR)
- Initial study of free maneuvering feasibility
 - Unconstrained operations separation assurance (NLR, Ames)
 - Air-Ground Integration Experiment (AGIE) study (NASA, WJHTC)
- Initial technology functionality developed for research studies
 - Air & ground decision-support displays with integrated conflict detection and resolution algorithms (Langley, Ames, NLR)
 - Conflict detection and resolution algorithms (Ames)
- Simulation environments developed
 - Free Flight Simulation (Langley, Ames)
 - Avionics Integration Research Simulation (AIRSIM) (NLR)
 - Traffic and Experiment Manager (NLR)
 - Future ATM Concepts Evaluation Tool (FACET) (Ames)
 - Air-Ground Integration Experiment (AGIE) capability (NASA, WJHTC)

Feasibility research on Unconstrained Operations ~80% complete. Initiating feasibility research on Constrained Operations.

Research & Development Status

Trajectory Negotiation (CE 6a & 6b)

- Initial concepts defined and explored for data exchange and trajectory negotiation
 - integration of 4-D ATSP advisories with 4-D FMS guidance and control
 - 4-D trajectory negotiation between an FMS and ATSP automation
 - air/ground information exchange for calibrating and improving the accuracy of ATSP and FMS trajectory predictions
- Studies on trajectory prediction and conformance
 - conformance accuracy of actual aircraft trajectories with ATSP predictions, for both FMS and non-FMS equipped aircraft
 - availability of pre-departure information from user systems for use in improving ATSP trajectory predictions
 - current wind prediction accuracy and potential ATM DST performance improvements through downlink of aircraft wind measurements

Collaboration for Wx, SUA, and Complexity Constraints (CE-7) (en route)

Problem:

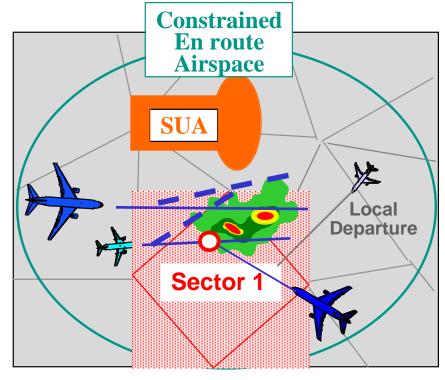
Excessive and un-preferred local-TFM deviations due to inefficient use of en route airspace

Solution:

- Provide the user with timely and accurate predictions of the state of the NAS (Weather, SUA activation, & airspace complexity constraints)
- Improve the prediction accuracy of NAS state
- Develop DSTs and procedures to:
 - » Improve local-TFM decisions and User plans/preferences (AOC & aircraft)
 - » Facilitate collaboration on the:
 - Type, extent, and implementation of local TFM initiatives (Users & ATSP)
 - Dynamic access to SUA (SUA authorities, ATSP, & Users)

- Increased user flexibility/efficiency in congested en route airspace
- Increased ATSP productivity and improved control of sector workload

Collaboration for Wx, SUA, and Complexity Constraints (CE-7) (en route)


Congested Airspace

Airspace / sector complexity (dynamic density) is predicted to exceed acceptable levels

—— Planned Path (airborne)

Planned Path (pre-departure)

O Predicted Conflict

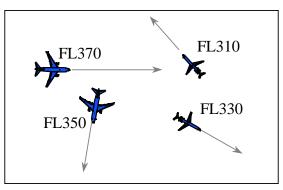
En route Air Route Traffic Control Center

Collaboration for Wx, SUA, and Complexity Constraints (CE-7) (en route)

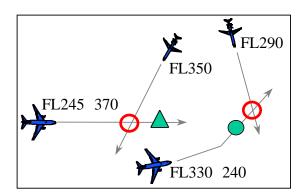
Local Traffic Flow Management

- Key NAS State:
 - Sector congestion/complexity (dynamic density)
- TFM "controls" (initiatives)
 - Re-routing
 - Spacing
 - » En route
 - » Departure control
 - Dynamic access to SUA
 - Dynamic re-sectorization

Current Time


Timeline of Sector 1
Traffic Demand

Dynamic / Gaggle Density

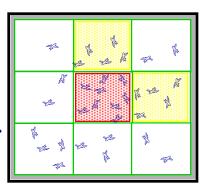


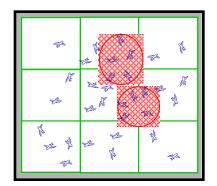
Low Traffic Complexity (Traffic count = 4)

Dynamic Density

Predictive measure of a sector's traffic complexity

- Potential Conflict
 Top of Climb (TOC)
- Top of Descent (TOD)




High Traffic Complexity (Traffic count = 4)

Dynamic Density

Discretized to airspace boundaries...

Prevent sector overload.

"Gaggle" Density

Shrink wrapped to dynamic gaggles... Method to identify and mitigate regions with congestion exceeding capabilities of air-to-air self separation

Dynamic Density vs. "Gaggle" Density air-to-air self separation.

Traffic Flow Management tools for preventing un-safe traffic loads

Research & Development Status Collaboration for Mitigating Constraints (CE 7)

- Constrained airspace problem defined
 - Concept proposed for improved TFM with gap analysis of the related R&D activities in the U.S.
 - Context established relative to earlier FAA/TFM concepts and current Free Flight and CDM activities
- Assessments of TFM strategies
 - Routing for local congestion and metering for arrival spacing
- Exploration of collaboration issues/process
 - National ground delay program and flight plan/re-routing
 - Operational issues / processes for collaboration during flight operations, specifically user-preferred sequences during CTAS arrival metering
- Constraint measurement and prediction
 - Dynamic density metric development and validation
 - Weather prediction technology (initiating collaborations)